

ARTIST Network of Excellence

International Collaboration Day

October 12th, 2003 Philadelphia

OS Support for Adaptive Real-Time Systems International Collaboration Day

Operating System Support For Adaptive Real-Time Systems

Giorgio Buttazzo

University of Pavia

October 12th, 2003 Philadelphia

OS Support for Adaptive Real-Time Systems

Why are we here?

- Todays RT applications are becoming more and more complex (in SW & HW)
- Memory and processing power impose strong limitations in the development
- Other constraints:
 - \Rightarrow Cost, Efficiency
 - \Rightarrow Timeliness, QoS
 - \Rightarrow Adaptivity to cope with dynamic changes
 - \Rightarrow Portability
 - \Rightarrow Security
 - \Rightarrow Fault-tolerance
 - \Rightarrow Energy consumption

October 12th, 2003 Philadelphia

OS Support for Adaptive Real-Time Systems

Current approach

- RTOSs are still the same as 10 years ago
- Complex applications are developed on top of kernels unsuited for supporting such features

October 12th, 2003 Philadelphia

OS Support for Adaptive Real-Time Systems

Consequences

- Most of the times the application works fine, but sometime it fails, unpredictably
- The "Plug and pray" paradigm is not acceptable any more

October 12th, 2003 Philadelphia

OS Support for Adaptive Real-Time Systems

Open issues

- Technically this is feasible (several research kernels already exist)
- Lot of open questions:
 - > Which features are most important?
 - Should the OS interface be modified?
 - > What is the impact on standards
 - How to break the market?

October 1^{2th}, 2003 Philadelphia

OS Support for Adaptive Real-Time Systems

Challenge

- Identify the minimal set of features that need to be included in current RT kernels to enable the development of embedded systems that are:
 - Predictable
 - Efficient
 - Resource-aware
 - Adaptive
 - Secure
 - Capable of coping with dynamic changes in the controlled environment

October 12th, 2003 Philadelphia

OS Support for Adaptive Real-Time Systems

Main focus

- To achieve this goal, we will mainly focus on different aspects, including
 - \Rightarrow scheduling
 - ⇒ resource management
 - ⇒ modularity and portability
- Open discussion about impact on
 - \Rightarrow design methodologies
 - \Rightarrow runtime overhead
 - ⇒ implementation complexity
 - \Rightarrow standard OS interfaces

Technical Program

- Liesbeth Steffens, Philips Research, NL Trends in operating systems: resource management for future CE systems
- 2. John Stankovic, Univ. of Virginia, USA Adaptive Wireless Sensor Networks

Coffee Break

- 3. Paolo Gai, Evidence Srl Implementing temporal isolation in tiny real-time systems
- Moon-Hae Kim (KonKuk University), Hyung-Seok Lee (ETRI, Korea) Embedding Real-Time Objects into Embedded Linux and Related Research Issues
- Albert Benveniste (INRIA / IRISA, France) Alberto Sangiovanni Vincentelli (U. of California @ Berkeley) OS Support in the Hard Real-Time System Design Flow